Bioremediation: A Sustainable Approach for Environmental Cleanup 17
Pathak, A., A. Chauhan, A. Y. Ewida and P. Stothard. 2016. Whole genome sequence analysis of an Alachlor and
Endosulfan degrading Micrococcus sp. strain 2385 isolated from Ochlockonee River, Florida. Journal of
Genomics. 4: 42.
Prasad, M. N. V., P. Malec, A. Waloszek, M. Bojka and K. Strzallka. 2001. Physiological responses of Lemna trisulca L.
(duckweed) to cadmium and copper bioaccumulation. Plant Sci. 161: 881.
Priyanka, J. V., S. Rajalakshmi, P. S. Kumar, V. G. Krishnaswamy, D. A. Al Farraj, M. S. Elshikh and M. R. A.
Gawwad. 2022. Bioremediation of soil contaminated with toxic mixed reactive azo dyes by co-cultured cells
of Enterobacter cloacae and Bacillus subtilis. Environ. Res. 204: 1
12136.
Rezania, S., M. Ponraj, M. F. M. Din, A. R. Songip, F. M. Sairan and S. Chelliapan. 2015. The diverse applications
of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew
.
Sustain. Energy Rev. 41: 943–954.
Rossi, T., P. M. S. Silva, L. F. De Moura, M. C. Araújo, J. O. Brito and H. S. Freeman. 2017. Waste from eucalyptus
wood steaming as a natural dye source for textile fibers. J. Clean. Prod. 143: 303–310.
Rudin, S. M., D. W. Murray and T. J. Whitfeld. 2017. Retrospective analysis of heavy metal contamination in Rhode
Island based on old and new herbarium specimens. Appl. Plant Sci. 5(1): 1600108.
Sagarkar, S., P. Bhardwaj, V. Storck, M. Devers-Lamrani, F. Martin-Laurent and A. Kapley. 2016. s-triazine degrading
bacterial isolate Arthrobacter sp. AK-YN10, a candidate for bioaugmentation of atrazine contaminated
soil. Appl. Microbial. Biotechnol. 100(2): 903–913.
Sangkharak, K., A. Choonut, T. Rakkan and P. Prasertsan. 2020. The degradation of phenanthrene, pyrene, and
fluoranthene and its conversion into medium-chain-length polyhydroxyalkanoate by novel polycyclic aromatic
hydrocarbon-degrading bacteria. Curr
. Microbiol. 77(6): 897–909.
Saptakee, S. 2011. Journal on Bioremediation for Oil spills.www.buzzle.com/articles.
Sarang, B., K. Richa and C. Ram. 2013. Comparative study of bioremediation of hydrocarbon fuel. Int. J. Biotechnol.
Bioeng. Res. 4: 677–686.
Sarkar, D., R. Datta and R. Hannigan. 2011. Geochemical cycling of trace and rare earth elements in Lake Tanganyika
and its major tributaries. pp. 135–171. In: Elsevier [ed.]. Concepts and Applications in Environmental
Geochemistry, 135.
Sarkar, S., A. Banerjee, U. Halder, R. Biswas and R. Bandopadhyay. 2017. Degradation of synthetic Azo Dyes of
textile industry: a sustainable approach using microbial enzymes. Water Conserv. Sci. Eng. 24(2): 121–131.
Seeger, M., M. Hernández, V. Méndez, B. Ponce, M. Córdova and M. González. 2010. Bacterial degradation and
bioremediation of chlorinated herbicides and biphenyls. J. Plant. Nutr
. Soil Sci. 10(3): 320–332.
Sengupta, K., M. T. Swain, P. G. Livingstone, D. E. Whitworth and P. Saha. 2019. Genome sequencing and comparative
transcriptomics provide a holistic view of 4-nitrophenol degradation and concurrent fatty acid catabolism by
Rhodococcus sp. strain BUPNP1. Front. Microbial. 9: 3209.
Shan, H., H. D. Kurtz Jr. and D. L. Freedman. 2010. Evaluation of strategies for anaerobic bioremediation of high
concentrations of halomethanes. Water Res. 44(5): 1317–1328.
Shah, V. and A. Daverey. 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated
soil. Environ.
Technol. Innov
. 18: 100774.
Sharma, R. and K. C. Yeh. 2020. The dual benefit of a dominant mutation in Arabidopsis IRON DEFICIENCY
TOLERANT1 for iron biofortification and heavy metal phytoremediation. Plant Biotechnol. J. 18(5): 1200–
1210.
Silva-Castro, G. A., I. Uad, J. Go´nzalez-Lo´pez, C. G. Fandino˜, F. L. Toledo and C. Calvo. 2012. Application of
selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil
using land farming technology. Clean Technol. Environ. Pol. 14: 719–726.
Singh, S. P. 2014. Application of bioremediation on solid waste management: a review. J. Bioremed. Biodegr
. 5(06).
Singh, G. and S. K. Dwivedi. 2022. Biosorptive and biodegradative mechanistic approach for the decolorization of
congo red dye by Aspergillus species. Bull. Environ. Contam.
Toxicol. 108(3): 457–467.
Smolyakov, B. S. 2012. Uptake of Zn, Cu, Pb, and Cd by water hyacinth in the initial stage of water system
remediation. Appl. Geochem. 27(6): 1214–1219.
Šrédlová, K., K. Šírová, T. Stella and T. Cajthaml. 2021. Degradation products of polychlorinated biphenyls and their
in vitro transformation by ligninolytic fungi. Toxics. 9(4): 81.
Syed, K., H. Doddapaneni, V. Subramanian, Y. W. Lam and J. S. Yadav. 2010. Genome-to-function characterization of
novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem. Biophys.
Res. Commun. 399(4): 492–497.
Tang, W. 2018. Research progress of microbial degradation of organophosphorus pesticides. Prog. Appl. Microbiol.
1: 29–35.
Thakor, R., H. Mistry, K. Tapodhan and H. Bariya. 2022. Efficient biodegradation of Congo red dye using fungal
consortium incorporated with Penicillium oxalicum and Aspergillus tubingensis. Folia Microbiol. 67(1): 33–43.